Neural Networks Part 2: Python Implementation


Ok so last time we introduced the feedforward neural network. We discussed how input gets fed forward to become output, and the backpropagation algorithm for learning the weights of the edges.

Today we will begin by showing how the model can be expressed using matrix notation, under the assumption that the neural network is fully connected, that is each neuron is connected to all the neurons in the next layer.

Once this is done we will give a Python implementation and test it out.

Matrix Notation For Neural Networks

Most of  this I learned from here.

In what follows, vectors are always thought of as columns, and so the transpose a row.

So first off we have $latex x in mathbb{R}^k$, our input vector, and $latex y in mathbb{R}^m$ our output vector.

Our neural network $latex N$ will have $latex N$ layers $latex L_1, dots …

View original post 535 more words


Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s